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Abstract: 

Accurate estimation of battery health is crucial for the reliable operation energy storage systems. 

This paper explores the application of Random Forest Regression (RFR) to estimate battery health, 

focusing on metrics such as Maximum Capacity. The study leverages a comprehensive simulation 

dataset comprising various operational parameters and degradation profiles from lithium-ion battery. 

By training the Random Forest model on this data, we aim to capture the complex, non-linear 

relationships inherent in battery aging processes. The proposed RFR approach is benchmarked 

against traditional methods, demonstrating good prediction accuracy and robustness. This research 

underscores the potential of machine learning techniques, particularly Random Forest Regression, in 

enhancing the predictive capabilities and operational efficiency of battery management systems. 
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1. Introduction 

The demand in consumer electronic systems, electric vehicles, and energy storage applications with 

renewable energy has significantly increased the demand for reliable and efficient battery 

technologies. Lithium-ion batteries, in particular, gained popular in Electric Mobility systems due to 

their high energy density and long charge-discharge cycle life. However, the batteries useful life is 

subject to reduce over time; there issues of low reliability and efficiency will occur. Accurate 

estimation of battery health, often quantified as the State of Health (SoH), is essential for ensuring 

optimal performance, safety, and longevity of battery systems. 

Traditional methods for battery health estimation often rely on empirical models, electrochemical 

impedance spectroscopy, or equivalent circuit models. While these approaches provide valuable 

insights, they are often limited by their inability to account for the complex, non-linear degradation 

processes that occur in real-world operating conditions. Consequently, there is a risingimportance in 

leveraging advanced data-driven techniques to enhance the accuracy and robustness of battery health 

predictions. 

Machine learning, with its capability to model complex patterns and relationships within large 

datasets, offers a promising alternative for battery health estimation. Among various machine 

learning techniques, Random Forest Regression (RFR) popularly used due to its advantages like 

robustness, multi-dimensional data handling, and avoidingover fitting. There are many applications 

in the literature using Random Forest algorithm across different sectors [1]-[10]. Assessment of the 

aging parameters for Lithium iron phosphate based battery is developed in[1], similarly acoustic 

classification and event detection is developed in [2], state of charge estimation (SOC) is proposed in 

[3], geometry and proximity estimation in [4] , energy consumption of an electric bus using the real-

time data is presented in [5]. Agriculture yield prediction is proposed in [6], identification and 

retrieval of soil salinity from the data is developed using deep learning in [7] , space vector PWM 

technique is implemented for induction motor using random forest Regressor in [8], age estimation is 

proposed in [9],and short term load forecasting using deep  random forest Regressor in [10]. 

This paper investigates the application of RFR for battery health prediction. We employ a 

comprehensive dataset form the simulation model of Lithium-ion battery aging with different 

charging-discharging cycles and encompassing various operational parameters and degradation 

profiles from lithium-ion batteries to train the RFR model. The primary objectives of this study are to 

assess the accuracy of RFR in predicting battery Maximum Capacity in Ampere-hour (Ah) rating and 

compare its performance with various operational conditions. 

In the following sections, description for Lithium-Ion Battery Aging and Maximum Capacity data 

generation form the simulation environment, description data statistics in section-1 of the paper , 

implementation of random forest Regressor is described in section-3, results and discussions are 
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elaborated in section-4 of this paper and finally conclusion is given in section-5. The present work 

aims to contribute to the growing body of knowledge on advanced battery health estimation 

techniques and highlight the potential of Random Forest Regression in enhancing the predictive 

capabilities and operational efficiency of energy storage systems. 

 

2. Lithium-Ion Battery Aging and Maximum CapacityData  

In this study, data is derived from 40 Ah battery. The battery model is tested for 1000 hours of 

multiple discharge-charge cycles at room temperature of 25oC, for various discharge rates. 

MATLAB/Simulink simulation data is used to observe the effects of Depth of Discharge (DOD) and 

discharge rate on battery life. Initially, the battery cycles to a 20% DOD at a 0.5 C discharge rate. 

This involves 20 Adischarge current at starting with 0.5 C-rate from an initial state of charge 

(SOC=100%) until the SOC reaches 80% (that means DOD of 100-80=20%), later the batter 

recharges to 100% SOC with the same current. Later this cycle are repeated for more number of 

cycle means the increased battery aging, during this process the temperature is varied from 25°C to 

33°C. 

At 200 hours, the DOD is increased to 80%, and the battery cycles between 20% and 100% SOC for 

another 200 hours, leading to accelerated aging. At 400 hours, DOD is reduced again to 20% in 

cyclic manner during 200 hours, slowing the aging process. Similarly at 600 hours, 2C-rate is 

considered discharge current is 80 A. causing the internal cell temperature to rise to 43°C. This rapid 

cycling accelerates battery aging and reduces capacity. At 800 hours, the battery dischargeswith 0.5 

C-rate for the remaining 200 hours. This process of charging and discharging leads to aging of the 

battery and decrease in its Maximum capacity. Overall description of the data is shown in Table.1. 

Table.1 Statistical Description of Data related to Lithium-Ion Battery Aging 

and Maximum Capacity 

 Voltage current SOC Temp Age Maximum 

Capacity 

count 209930 209930 209930. 209930 209930 209930 

mean 13.500621 5.670682 85.644884 33.118008 92.069137 42.720527 

std 0.422658 31.159280 15.994282 3.811884 56.562089 0.269990 

min 12.373688 -20.000000 19.166021 25.000000 0.000000 42.289759 

25% 13.159353 -20.000000 79.818505 30.800539 39.228940 42.473138 

50% 13.524340 -20.000000 88.559745 31.122280 91.228943 42.724534 

75% 13.878877 20.000000 97.887968 38.379905 143.895665 42.972747 

max 14.379213 80.000000 100.000000 41.015490 182.312999 43.160000 

 

 
(a) 
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(b) 

 

Fig.1(a) Maximum Capacity of Battery with respect to Aging (b)  Aging of Battery involving many 

charging-discharging cycles 

 
(a) 

 
(b) 

Fig.2(a) Voltage of Battery during charging –discharging cycles(b) Zoomed view of voltage during 

charging –discharging cycle 
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(a) 

 
(b) 

Fig.3(a) Battery SOC (State-of –Charge) during charging –discharging cycles(b) Zoomed view of 

SOC during charging –discharging cycle 

 

 
(a) 
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(b) 

Fig.4(a) Various Temperature conditions considered(b) Zoomed view  

 
 

 

 
Fig.5(a) Battery Current during charging –discharging cycles(b) Zoomed view of Current 

 

3. Implementation of Random Forest Regression  

Random Forest is popular algorithm prediction problems. It constructs numerous decision trees and 

combines their outputs to achieve more accurate and reliable predictions. This method was created 

by Leo Breiman and Adele Cutler. 
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Fig.6 Random forest algorithm schematic diagram  

Random Forest Regression is an excellent algorithm for regressionand working of this algorithm is 

presented in Fig.6. It consists of following features  

(i) Bootstrap Sampling:  

It is selecting different data sets and considered for training with data replacement randomly. In the 

fields of statistics and machine learning, this resampling method involves repeatedly selecting 

samples from the original dataset with replacement, typically to estimate a population parameter. 

(ii) Training Multiple Trees:  

Each subset of data is used to train a decision tree. In the forest, each tree learns from a randomly 

selected sample of the data. 

(iii) Aggregation of Results: 

The final prediction is derived by averaging the predictions of all individual decision trees. 

Python Sample Code for Regression  

 
 

4. Results and Discussions  

The Random Forest Regressor is applied to the data frame described in Table.1 with the default 

parameters viz. number of estimators=100, error criteria is squared error, boost strap sampling, 

minimum sample split=2 , minimum sample leaf=1 ,minimum weight fraction leaf=0 etc. 
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In this work, total data frame consists of 209930 rows × 6 columns, in which 80% of the data is used 

for training and testing. The size of the data frame for training is 167944 rows x 5 columns and for 

testing is 41986 rows x 5 columns.It is observed that the RFR algorithm is estimated the battery 

health successfully. The Fig.7 shows the predicted Maximum capacity (Ampere-hour (Ah)) of the 

battery with respect to the Actual Maximum Capacity (Ah) of the Battery. It is observed that Actual 

and estimated values nearly same. The absolute error between these two values is shown in Fig.8. 

The absolute error is negligibly less and is near to zero value. It is a known fact that the capacity of 

the battery will reduce with the aging of a battery due to more number of charging & discharging 

cycles. The Fig. 9 shows the actual and predicted maximum capacity of the battery with respect to 

the battery aging. It is also observed that the predicted value is as expected with actual value with 

respect to the battery aging. The mean square error (MSE) of prediction is 0.0056448. 

 
Fig.7 Maximum Capacity of a Battery Predicted with respect to Actual 

 
Fig.8Absolute error between predicted Maximum Capacity and Actual Value 
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Fig.9 Maximum Capacity (Ah) of Battery withthe increase of Aging (number of charging & 

discharging cycles) and their actual and predicted values 

 

5. Conclusion 

In this work, the use of Random Forest Regression (RFR) to calculate battery health is investigated. 

The study leverages a comprehensive dataset comprising various operational parameters such as 

voltage, current, SOC, Temperature, Age, Maximum Capacity of lithium-ion batteries. By training 

the Random Forest model on this data, captured the complex, non-linear relationships inherent in 

battery aging processes. In this work successfully predicted the battery Maximum capacity with 

respect to the other operational conditions.  
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